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1 球関数

以下では，全球面上で任意の分布を持つ量（ジオイド異常，地震波速度構造，海面の温度分布な

ど）は球面調和関数の重ね合わせによって表現できることを導く．

1.1 ルジャンドルの微分方程式

真空の場合の重力ポテンシャルや，電荷がない場合の電磁気ポテンシャルはラプラス方程式

∇2ψ = 0 (1.1)

に従う．

球座標系では，[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2
1

sin2 θ

∂2

∂ϕ2

]
ψ(r, θ, ϕ) = 0 (1.2)

となる．変数分離を用いてこの解を

ψ(r, θ, ϕ) ≡ R(r)Θ(θ)Φ(ϕ) (1.3)

と仮定する.

このとき，Φ(ϕ)についての解は，

Φ(ϕ) =

∞∑
m=0

(
Ame

imϕ +Bme
−imϕ

)
(1.4)

または

Φ(ϕ) =
∞∑

m=0

(Cm cosmϕ+Dm sinmϕ) (1.5)

と書ける．ここで，Am, Bm, Cm, Dm は係数である．

Θ(θ)についての解は，ルジャンドルの微分方程式

d

dx

[(
1− x2

) dΘ
dx

]
+

[
n(n+ 1)− m2

1− x2

]
Θ = 0 (1.6)

を満たす．m = 0の場合の解を，ルジャンドル多項式と呼び，Pn(x)と書く．m ̸= 0の場合の解

を，ルジャンドル陪関数 Pm
n (x)と呼ぶ．

θ についての解が
Pm
n (x) = Pm

n (cos θ) (1.7)
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とした場合，R(r)についての解は，
R(r) ∝ rn (1.8)

または，
R(r) ∝ r−n−1 (1.9)

と書ける．

結局，ラプラス方程式の解は

ψ(r, θ, ϕ) = a
∞∑

n=0

n∑
m=0

{
(gmn cosmϕ+ hmn sinmϕ)

( r
a

)−n−1

(1.10)

+
(
ḡmn cosmϕ+ h̄mn sinmϕ

) ( r
a

)n}
Pm
n (cos θ) (1.11)

と表せる．ここで，gmn , hmn , ḡmn , h̄mn は係数である．解が有限の大きさの球の半径（a）で規格化

されていることに注意する．

1.2 ルジャンドル多項式

ルジャンドルの微分方程式の解は，m = 0の場合，x = cos θとして，

Pn(cos θ) =

2r≤n∑
r=0

(−1)r
(2n− 2r)

2nr!(n− r)!(n− 2r)!
cosn−2r θ (1.12)

=
(2n)!

22n(n!)2

{
2 cosnθ +

1 · n
1 · (2n− 1)

cos(n− 2)θ

+2
1 · 3 · n(n− 1)

1 · 2 · (2n− 1)(2n− 3)
cos(n− 4)θ + . . .

}
(1.13)

で定義される．この関数をルジャンドル多項式（関数）と呼ぶ．

1.3 ルジャンドル陪関数

ルジャンドルの微分方程式の解は，m ̸= 0の場合，x = cos θとして，

Pm
n (cos θ) = sinm θ

dmPn(cos θ)

d(cos θ)m
(1.14)

で定義される．この関数をルジャンドル陪関数と呼ぶ．n及び mは正の整数で，n ≥ m である．

m = 0の場合には，P 0
n = Pn である．

Pm
n は次の微分方程式を満足する．

d2Pm
n

dθ2
+ cot θ

dPm
n

dθ
+

{
n(n+ 1)− m2

sin2 θ

}
Pm
n = 0 (1.15)

詳細は [5, 7]を参考のこと．

3



1.4 球面調和関数

1.4.1 球面調和関数

球座標におけるラプラス方程式の一般解は

ψ(r, θ, ϕ) = a
∞∑

n=0

n∑
m=0

{[
gmn

(a
r

)n+1

cosmϕ+ ḡmn

( r
a

)n

sinmϕ

]
(1.16)

+

[
hmn

(a
r

)n+1

cosmϕ+ h̄mn

( r
a

)n

sinmϕ

]}
Pm
n (cos θ) (1.17)

である．

ここで，Pm
n (cos θ) cosmϕ と Pm

n (cos θ) sinmϕ の 0 ≤ m ≤ n についての線形結合

Y m
n (θ, ϕ) = (Cm

n cosmϕ+ Sm
n sinmϕ)Pm

n (cos θ) (1.18)

を n次，m階の球面調和関数という．ここに Cm
n と Sm

n は係数である．

Cm
n ≡ gmn

(a
r

)n+1

cosmϕ+ ḡmn

( r
a

)n

sinmϕ (1.19)

Sm
n ≡ hmn

(a
r

)n+1

cosmϕ+ h̄mn

( r
a

)n

sinmϕ (1.20)

このとき，

ψ(r, θ, ϕ) = a

∞∑
n=0

n∑
m=0

Y m
n (θ, ϕ) (1.21)

と書ける．

1.4.2 球面上での球面調和関数による展開

一般に単位球面上（r = a = 1）で与えられる関数 f(θ, ϕ)は

f(θ, ϕ) =
∞∑

n=0

n∑
m=0

(Cm
n cosmϕ+ Sm

n sinmϕ)Pm
n (cos θ) (1.22)

=
∞∑

n=0

n∑
m=0

Y m
n (θ, ϕ) (1.23)

と表される．このとき，

Cm
n ≡ gmn + ḡmn (1.24)

Sm
n ≡ hmn + h̄mn (1.25)

である．*1

*1 地球電磁気学では，地球磁場のポテンシャルについて，これらの係数をガウス係数と呼ぶ．
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1.4.3 球面調和関数の係数

三角関数の直交性の関係を用いて係数 Cm
n と Sm

n を定めることが出来る．まず，

∫ 2π

0

cosmϕ cosm′ϕ =


0 (m ̸= m′)

π (m = m′ ̸= 0)

2π (m = m′ = 0)

(1.26)

∫ 2π

0

sinmϕ sinm′ϕ =


0 (m ̸= m′)

π (m = m′ ̸= 0)

2π (m = m′ = 0)

(1.27)

∫ 2π

0

sinmϕ cosm′ϕ = 0 (1.28)

を利用するために，両辺に cosmϕ，sinmϕをかけると

f(θ, ϕ) cosmϕ =

∞∑
n=0

n∑
m=0

(Cm
n cosmϕ cosmϕ+ Sm

n sinmϕ cosmϕ)Pm
n (cos θ) (1.29a)

f(θ, ϕ) sinmϕ =

∞∑
n=0

n∑
m=0

(Cm
n cosmϕ sinmϕ+ Sm

n sinmϕ sinmϕ)Pm
n (cos θ) (1.29b)

ϕに対して，0から 2π まで積分すると∫ 2π

0

f(θ, ϕ) cosmϕdϕ =

∫ 2π

0

∞∑
n=0

n∑
m=0

(Cm
n cosmϕ cosmϕ+ Sm

n sinmϕ cosmϕ)Pm
n (cos θ)dϕ

(1.30a)∫ 2π

0

f(θ, ϕ) sinmϕdϕ =

∫ 2π

0

∞∑
n=0

n∑
m=0

(Cm
n cosmϕ sinmϕ+ Sm

n sinmϕ sinmϕ)Pm
n (cos θ)dϕ

(1.30b)

三角関数の直交性より，∫ 2π

0

f(θ, ϕ) cosmϕdϕ =

∫ 2π

0

∞∑
n=0

n∑
m=0

Cm
n cosmϕ cosmϕPm

n (cos θ)dϕ

=
∞∑

n=0

n∑
m=0

Pm
n (cos θ)Cm

n

∫ 2π

0

cosmϕ cosmϕdϕ

= ϵmπ

∞∑
n=0

n∑
m=0

Pm
n (cos θ)Cm

n (1.31a)

∫ 2π

0

f(θ, ϕ) sinmϕdϕ =

∫ 2π

0

∞∑
n=0

n∑
m=0

Sm
n sinmϕ sinmϕPm

n (cos θ)dϕ

=
∞∑

n=0

n∑
m=0

Pm
n (cos θ)Sm

n

∫ 2π

0

sinmϕ sinmϕdϕ

= ϵmπ
∞∑

n=0

n∑
m=0

Pm
n (cos θ)Sm

n (1.31b)
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ここで，

ϵm =

{
2 (m = 0)

1 (m = 1, 2, 3, . . . )
(1.32)

従って， (
Cm

n

Sm
n

)
Pm
n (cos θ) =

1

ϵmπ

∫ 2π

0

f(θ, ϕ)

(
cosmϕ
sinmϕ

)
dϕ (1.33)

両辺に Pm
n (cos θ) sin θ をかけて，θについて 0から π まで積分すると，(

Cm
n

Sm
n

)∫ π

0

Pm
n (cos θ)Pm

n (cos θ) sin θdθ =
1

ϵmπ

∫ 2π

0

(
cosmϕ
sinmϕ

)
dϕ

∫ π

0

sin θdθf(θ, ϕ)Pm
n (cos θ)

(1.34)

ここで，ルジャンドル陪関数の直交性∫ 1

−1

Pm
n (x)Pm

l (x)dx = 0 (l ̸= n) (1.35)∫ 1

−1

[Pm
n (x)]

2
dx =

2

2n+ 1

(n+m)!

(n−m)!
(1.36)

さらに，x = cos θ, dx = sin θdθ として，∫ π

0

[Pm
n (cos θ)]

2
sin θdθ =

2

2n+ 1

(n+m)!

(n−m)!
(1.37)

の関係を用いると(
Cm

n

Sm
n

)
2

2n+ 1

(n+m)!

(n−m)!
=

1

ϵmπ

∫ 2π

0

(
cosmϕ
sinmϕ

)
dϕ

∫ π

0

sin θdθf(θ, ϕ)Pm
n (cos θ) (1.38)

よって，(
Cm

n

Sm
n

)
=

2n+ 1

2ϵmπ

(n−m)!

(n+m)!

∫ 2π

0

(
cosmϕ
sinmϕ

)
dϕ

∫ π

0

sin θdθf(θ, ϕ)Pm
n (cos θ) (1.39)

こうして，f(θ, ϕ)が与えられれば，球面調和関数の係数 Cm
n と Sm

n が求まる．

1.4.4 球関数の正規化

nやmが大きい値であると，Pm
n も大きい値になるので，球関数の正規化（normalization）を

行って，適当な値の大きさの Pnm とすると便利である．

qnm =

√
2(2n+ 1)

ϵm

(n−m)!

(n+m)!
(1.40)

とおき，

Pnm(cos θ) = qnmP
m
n (cos θ) (1.41)(

Cnm

Snm

)
=

1

qnm

(
Cm

n

Sm
n

)
(1.42)
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とすると， (
Cnm

Snm

)
=

1

4π

∫ 2π

0

(
cosmϕ
sinmϕ

)
dϕ

∫ π

0

sin θdθf(θ, ϕ)Pnm(cos θ) (1.43)

とおける．qn,m を完全正規化球関数（fully-normalized spherical harmonic function）という．

つまり，完全正規化されたルジャンドル陪関数 Pnm, Plm は，∫ 1

−1

Pnm(x)Plm(x)dx = 2(2− δm0)δnl (1.44)∫ 1

−1

[Pnm(x)]
2
dx =

4

ϵm
(1.45)

を満たすことになる．ここで，

δm0 =

{
1 (m = 0)

0 (m ̸= 0)
δnl =

{
1 (n = l)

0 (n ̸= l)
(1.46)

完全正規化球関数に代わって，

qnm =

√
2

ϵm

(n−m)!

(n+m)!
(1.47)

とする流儀もある．これをシュミット球関数（Schmidt spherical harmonic function）と呼ぶ．こ

のとき， (
Cnm

Snm

)
=

2n+ 1

4π

∫ 2π

0

(
cosmϕ
sinmϕ

)
dϕ

∫ π

0

sin θdθf(θ, ϕ)Pnm(cos θ) (1.48)

となる．

測地学やマントルダイナミクスでは完全正規化球関数を，地球電磁気学やコアダイナミクス [4]

ではシュミット球関数を用いる．

1.4.5 球面調和関数の直交条件

球面調和関数の直交条件について，より一般的な表記で示す．球面調和関数は

Y m
n (θ, ϕ) =

∞∑
n=0

n∑
m=0

(Cm
n cosmϕ+ Sm

n sinmϕ)Pm
n (cos θ) (1.49)

=
∞∑

n=0

n∑
m=0

(Cm
n A

m
n (θ, ϕ) + Sm

n B
m
n (θ, ϕ)) (1.50)

ここで，

Am
n (θ, ϕ) = Pm

n (cos θ) cosmϕ (1.51a)

Bm
n (θ, ϕ) = Pm

n (cos θ) sinmϕ (1.51b)
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二つの球面調和関数の積を球面上で積分すると，
∫
S

Am
n (θ, ϕ)Ar

s(θ, ϕ)dS∫
S

Bm
n (θ, ϕ)Br

s(θ, ϕ)dS

 = 0 (s ̸= nまたは r ̸= m) (1.52)

∫
S

Am
n (θ, ϕ)Br

s(θ, ϕ)dS = 0 (1.53)


∫
S

[Am
n (θ, ϕ)]

2
dS∫

S

[Bm
n (θ, ϕ)]

2
dS

 =
2π

2n+ 1

(n+m)!

(n−m)!
(1.54)

1.4.6 実数球面調和関数

以降の記述では慣例に従い，次数 nはすべて lで表すことにする．

球面調和関数は複素数を用いたとき，単位球面上（r = a = 1）で与えられる関数 f(θ, ϕ)は

f(θ, ϕ) =
∞∑

n=0

n∑
m=−n

Am
n P

|m|
n (cos θ)eimϕ (1.55)

と書ける．このとき，係数 Alm は，

Am
l =

2n+ 1

4π

(l − |m|)!
(l + |m|)!

∫ 2π

0

dϕ

∫ π

0

sin θdθf(θ, ϕ)P
|m|
l (cos θ)e−imϕ (1.56)

このとき，正規直交化に対応した球面調和関数は，

Yl,m(θ, ϕ) = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ (1.57)

と表される．mが負の場合は，正の場合と複素共役の関係にあることに注意．

しかし実空間では実数のみ扱うので，実数球面調和関数（real spherical harmonic function）を

用いると便利である．球面調和関数と実数球面調和関数は以下の関係がある．

Yl,m(θ, ϕ) ≡


1

i
√
2
(Yl,m(θ, ϕ)− Yl,−m(θ, ϕ)) (m < 0)

Yl,m(θ, ϕ) (m = 0)
1√
2
(Yl,m(θ, ϕ) + Yl,−m(θ, ϕ)) (m > 0)

(1.58)

=


√
2Kl,mPl,m(cos θ) cos(mϕ) (m < 0)

Kl,mPl,m(cos θ) (m = 0)√
2Kl,mPl,m(cos θ) sin(mϕ) (m > 0)

(1.59)
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ここで，

Kl,m = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

(1.60)

また，オイラーの定理より

eimϕ = cos(mϕ) + i sin(mϕ) (1.61)

eimϕ + e−imϕ = 2 cos(mϕ) (1.62)

eimϕ − e−imϕ = 2 sin(mϕ) (1.63)

の関係を用いた.

1.5 その他

1.5.1 ルジャンドル関数の微分に関する漸化式

ルジャンドル関数の微分は漸化式を用いるのが便利である．

(1− x2)
dPm

l (x)

dx
= (l + 1)xPm

l (x)− (l −m+ 1)Pm
l+1(x) (1.64)

= (l +m)Pm
l−1(x)− lxPm

l (x) (1.65)

=
√
1− x2Pm+1

l (x)−mxPm
l (x) (1.66)

= mxPm
l (x)− (l +m)(l −m+ 1)

√
1− x2Pm−1

l (x) (1.67)

特に x = cos θ のとき，

dPm
l (cos θ)

d cos θ
=
dPm

l (cos θ)

dθ

dθ

d cos θ
= − 1

sin θ

dPm
l (cos θ)

dθ
(1.68)

であることを利用して

dPm
l (cos θ)

dθ
= − 1

sin θ

[
(l + 1) cos θPm

l (cos θ)− (l −m+ 1)Pm
l+1(cos θ)

]
(1.69)

= − 1

sin θ

[
(l +m)Pm

l−1(cos θ)− l cos θPm
l (cos θ)

]
(1.70)

= − 1

sin θ

[√
1− cos2 θPm+1

l (cos θ)−m cos θPm
l (cos θ)

]
(1.71)

= − 1

sin θ

[
m cos θPm

l (cos θ)− (l +m)(l −m+ 1)
√
1− cos2 θPm−1

l (cos θ)
]

(1.72)

2 ポロイダル場・トロイダル場

以下では，全球面上の任意のベクトル量（プレート運動などの速度場，磁場，電場）がポロイダ

ル場とトロイダル場に分解できることを導く．以降の記述では慣例に従い，次数 nはすべて lで表

すことにする．
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2.1 ベクトル場の展開

ヘルムホルツの分解定理から，任意のベクトル場 Aはソレノイダル部分（発散が 0の部分）B

と非回転部分（回転が 0の部分）C とに分けられることが知られている．すなわち，

A = B +C (2.1)

∇ ·B = 0, ∇×C = 0 (2.2)

つまり，

B = ∇× F (∇ · (∇× F ) = 0) (2.3)

C = ∇f (∇× (∇f) = 0) (2.4)

とすると，

A = ∇× F +∇f (2.5)

を満たすスカラー f とベクトル F が存在する．

一般にベクトル場Aが
∇ ·A = 0 (2.6)

（ソレノイド条件）を満たすとき，

A = ∇×Λp+Λq (2.7)

= ∇×∇× per +∇× qer (2.8)

と分解することが出来る．ここで
Λ = er ×∇ (2.9)

で，pと q はポロイダルスカラー，トロイダルスカラーである [1]．

従って，速度場 uが，
∇ · u = 0 (2.10)

を満たすとき，トロイダル場 T とポロイダル場 S に分解することが出来る [2]．

u = T + S (2.11)

= ∇× Ter +∇×∇× Ser (2.12)

= ∇×
(
Ψ

r
er

)
+∇×∇×

(
Φ

r
er

)
(2.13)

ここで，T と S，Ψと Φはスカラー関数．
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また，トロイダル場 T とポロイダル場 S は以下のようにも書き換えられる．

T = ∇× Ter

= T∇× er +∇T × er

= ∇T × er (2.14)

S = ∇×∇× Ser

= ∇× (S∇× er +∇S × er)

= ∇× (∇S × er) (2.15)

ここで，∇× r = 0を用いた．

トロイダル場 T とポロイダル場 S の成分は，

Tr = 0 Tθ =
1

r sin θ

∂Ψ

∂ϕ
Tϕ = −1

r

∂Ψ

∂θ
(2.16)

Sr =
1

r2
L2Φ Sθ =

1

r

∂2Φ

∂r∂θ
Sϕ =

1

r sin θ

∂2Φ

∂r∂ϕ
(2.17)

ここで，

L2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2
(2.18)

スカラー関数 Ψと Φを

Ψ =
∑
l,m

Tm
l (r)Y m

l (θ, ϕ) (2.19)

Φ =
∑
l,m

Sm
l (r)Y m

l (θ, ϕ) (2.20)

のように球面調和関数
Y m
l (θ, ϕ) = eimϕP

|m|
l (cos θ) (2.21)

で展開すると，トロイダル場 T とポロイダル場 S は

Tr = 0 Tθ =
T (r)

r sin θ

∂Y m
l

∂ϕ
Tϕ = −T (r)

r

∂Ψ

∂θ
(2.22)

Sr =
l(l + 1)

r2
S(r)Y m

l Sθ =
1

r

dS(r)

dr

∂Y m
l

∂θ
Sϕ =

1

r sin θ

dS(r)

dr

∂Y m
l

∂ϕ
(2.23)

ここで，
L2Y m

l = l(l + 1)Y m
l (2.24)

すると uの成分は，

ur = Tr + Sr =
S(r)

r2
l(l + 1)Y m

l (2.25a)

uθ = Tθ + Sθ =
1

r
T (r)

1

sin θ

∂Y m
l

∂ϕ
+

1

r

dS(r)

dr

∂Y m
l

∂θ
(2.25b)

uϕ = Tϕ + Sϕ =
1

r

dS(r)

dr

1

sin θ

∂Y m
l

∂ϕ
− 1

r
T (r)

∂Y m
l

∂θ
(2.25c)
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2.2 ポロイダル係数・トロイダル係数

Sm
l =

1

r

dS(r)

dr
(2.26)

T m
l =

1

r
T (r) (2.27)

とおく．以下では，係数 Sm
l と T m

l を定める．

uθ と uϕ は，

uθ = T m
l

1

sin θ

∂Y m
l

∂ϕ
+ Sm

l

∂Y m
l

∂θ
(2.28)

uϕ = Sm
l

1

sin θ

∂Y m
l

∂ϕ
− T m

l

∂Y m
l

∂θ
(2.29)

ここで，球面調和関数 Y m
l を

Y m
l = Pm

l (cos θ) cosmϕ (2.30)

とすると，

∂Y m
l

∂θ
= − sin θ cosmϕ

∂Pm
l (cos θ)

∂θ
(2.31)

∂Y m
l

∂ϕ
= −m sinmϕPm

l (cos θ) (2.32)

よって，

uθ =

{
T m
l

1

sin θ
(−m sinmϕPm

l (cos θ)) + Sm
l

(
− cosmϕ sin θ

∂Pm
l (cos θ)

∂θ

)}
(2.33a)

uϕ =

{
Sm
l

1

sin θ
(−m sinmϕPm

l (cos θ))− T m
l

(
− cosmϕ sin θ

∂Pm
l (cos θ)

∂θ

)}
(2.33b)

内を ∼ mϕと cosmϕでまとめると，

uθ =

{
T m
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ+ Sm

l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ

}
(2.34a)

uϕ =

{
Sm
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ− T m

l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ

}
(2.34b)
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2.2.1 ポロイダル係数

uθ と uϕ にそれぞれの両辺に cosmϕと sinmϕをかけると，∫ 2π

0

uθ cosmϕdϕ =

∫ 2π

0

{
T m
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ cosmϕ

+Sm
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ cosmϕ

}
dϕ (2.35a)∫ 2π

0

uϕ sinmϕdϕ =

∫ 2π

0

{
Sm
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ sinmϕ

−T m
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ sinmϕ

}
dϕ (2.35b)

三角関数の直交性より∫ 2π

0

uθ cosmϕdϕ =

∫ 2π

0

{
Sm
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ cosmϕ

}
dϕ

= ϵmπSm
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
(2.36a)∫ 2π

0

uϕ sinmϕdϕ =

∫ 2π

0

{
Sm
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ sinmϕ

}
dϕ

= ϵmπSm
l

(
− m

sin θ
Pm
l (cos θ)

)
(2.36b)

従って，

−Sm
l sin θ

∂Pm
l (cos θ)

∂θ
=

1

ϵmπ

∫ 2π

0

uθ cosmϕdϕ (2.37)

−Sm
l

m

sin θ
Pm
l (cos θ) =

1

ϵmπ

∫ 2π

0

uϕ sinmϕdϕ (2.38)

(2.39)

それぞれに −∂P
m
l (cos θ)

∂θ
sin θと −mPm

l (cos θ) sin θ をかけると，

Sm
l sin2 θ

∂Pm
l (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ
=

1

ϵmπ

∫ 2π

0

uθ cosmϕ

(
−∂P

m
l (cos θ)

∂θ
sin θ

)
dϕ (2.40a)

Sm
l m

2Pm
l (cos θ)Pm

l (cos θ) =
1

ϵmπ

∫ 2π

0

uϕ sinmϕ (−mPm
l (cos θ) sin θ) dϕ (2.40b)

(2.40c)
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それぞれの両辺を θ について 0から 2π まで積分すると，∫ π

0

Sm
l sin2 θ

∂Pm
l (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ
dθ =

1

ϵmπ

∫ 2π

0

∫ π

0

uθ cosmϕ

(
−∂P

m
l (cos θ)

∂θ
sin θ

)
dθdϕ

=
1

ϵmπ

∫
S

uθ
∂Y m

l

∂θ
dS (2.41a)∫ π

0

Sm
l m

2Pm
l (cos θ)Pm

l (cos θ)dθ =
1

ϵmπ

∫ 2π

0

∫ π

0

uϕ sinmϕ (−mPm
l (cos θ) sin θ) dθdϕ

=
1

ϵmπ

∫
S

uϕ
1

sin θ

∂Y m
l

∂ϕ
dS (2.41b)

ここで，ルジャンドル関数の直交性に関する公式 [6]

∫ π

0

[
m2

sin θ
Pm
n (cos θ)Pm

l (cos θ) + sin θ
∂Pm

n (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ

]
=

0 (n ̸= l)
2(n+m)!

(n−m)!

n(n+ 1)

2n+ 1
(n = l)

(2.42)

あるいは，

∫ π

0

[
m2Pm

n (cos θ)Pm
l (cos θ) + sin2 θ

∂Pm
n (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ

]
=

0 (n ̸= l)
2(n+m)!

(n−m)!

n(n+ 1)

2n+ 1
(n = l)

(2.43)

を使って両辺を足すと，

Sm
l

2l(l + 1)

2l + 1

(l +m)!

(l −m)!
=

1

ϵmπ

∫
S

(
uθ
∂Y m

l

∂θ
+

uϕ
sin θ

∂Y m
l

∂ϕ

)
dS (2.44)

よって，

Sm
l =

2l + 1

2l(l + 1)

(l −m)!

(l +m)!

1

ϵmπ

∫
S

(
uθ
∂Y m

l

∂θ
+

uϕ
sin θ

∂Y m
l

∂ϕ

)
dS (2.45)

係数を正規化するために，完全正規化球数

qlm =

√
2(2l + 1)

ϵm

(l −m)!

(l +m)!
(2.46)

を使って，

Ylm(cos θ) = qlmY
m
l (cos θ) (2.47)

Slm =
1

qlm
Sm
l (2.48)

とおくと，最終的に

Slm =
1

4πl(l + 1)

∫
S

(
uθ
∂Y m

l

∂θ
+

uϕ
sin θ

∂Y m
l

∂ϕ

)
dS (2.49)
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以上では，球面調和関数は cosmϕを使って Y m
l = Pm

l (cos θ) cosmϕと定義したが，sinmϕを

使って Y m
l = Pm

l (cos θ) sinmϕと定義した場合も同様の結果が得られる．それぞれの球面調和関

数を (
Y mc
l

Y ms
n

)
= Pm

l (cos θ)

(
cosmϕ
sinmϕ

)
(2.50)

のように区別し，正規化したものを Y c
lm と Y s

lm とすると，ポロイダル係数の cos項と sin項は，

Scos
lm =

1

4πl(l + 1)

∫
S

(
uθ
∂Y cos

lm

∂θ
+

uϕ
sin θ

∂Y cos
lm

∂ϕ

)
dS (2.51a)

Ssin
lm =

1

4πl(l + 1)

∫
S

(
uθ
∂Y sin

lm

∂θ
+

uϕ
sin θ

∂Y sin
lm

∂ϕ

)
dS (2.51b)

2.2.2 トロイダル係数

uθ と uϕ にそれぞれの両辺に sinmϕと cosmϕをかけると，∫ 2π

0

uθ sinmϕdϕ =

∫ 2π

0

{
T m
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ sinmϕ

+Sm
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ sinmϕ

}
dϕ (2.52a)∫ 2π

0

uϕ cosmϕdϕ =

∫ 2π

0

{
Sm
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ cosmϕ

−T m
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ cosmϕ

}
dϕ (2.52b)

三角関数の直交性より∫ 2π

0

uθ sinmϕdϕ =

∫ 2π

0

{
T m
l

(
− m

sin θ
Pm
l (cos θ)

)
sinmϕ sinmϕ

}
dϕ

= ϵmπT m
l

(
− m

sin θ
Pm
l (cos θ)

)
(2.53a)∫ 2π

0

uϕ cosmϕdϕ =

∫ 2π

0

{
−T m

l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
cosmϕ cosmϕ

}
dϕ

= −ϵmπT m
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
(2.53b)

従って，

T m
l

(
− m

sin θ
Pm
l (cos θ)

)
=

1

ϵmπ

∫ 2π

0

uθ sinmϕdϕ (2.54a)

−T m
l

(
− sin θ

∂Pm
l (cos θ)

∂θ

)
=

1

ϵmπ

∫ 2π

0

uϕ cosmϕdϕ (2.54b)
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それぞれに −mPm
l (cos θ) sin θ と −∂P

m
l (cos θ)

∂θ
sin θ をかけると，

T m
l m2Pm

l (cos θ)Pm
l (cos θ) =

1

ϵmπ
　

∫ 2π

0

uθ sinmϕ (−mPm
l (cos θ) sin θ) dϕ (2.55a)

−T m
l sin2 θ

∂Pm
l (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ
=

1

ϵmπ
　

∫ 2π

0

uϕ cosmϕ

(
−∂P

m
l (cos θ)

∂θ
sin θ

)
dϕ

(2.55b)

それぞれの両辺を θ について 0から 2π まで積分すると，∫ π

0

T m
l m2Pm

l (cos θ)Pm
l (cos θ)dθ =

1

ϵmπ

∫ 2π

0

∫ π

0

uθ sinmϕ (−mPm
l (cos θ) sin θ) dθdϕ

=
1

ϵmπ

∫
S

uθ
sin θ

∂Y m
l

∂ϕ
dS (2.56a)∫ π

0

−T m
l sin2 θ

∂Pm
l (cos θ)

∂θ

∂Pm
l (cos θ)

∂θ
dθ =

1

ϵmπ

∫ 2π

0

∫ π

0

uϕ cosmϕ

(
−∂P

m
l (cos θ)

∂θ
sin θ

)
dθdϕ

=
1

ϵmπ

∫
S

uϕ
∂Y m

l

∂θ
dS (2.56b)

ポロイダル係数の場合と同様にルジャンドル関数の直交性に関する公式を使って両辺を引くと，

T m
l =

(2l + 1)

2l(l + 1)

(l −m)!

(l +m)!

1

ϵmπ

∫
S

(
uθ
sin θ

∂Y m
l

∂ϕ
− uϕ

∂Y m
l

∂θ

)
dS (2.57)

正規化を行って，

Tlm =
1

4πl(l + 1)

∫
S

(
uθ
sin θ

∂Y m
l

∂ϕ
− uϕ

∂Y m
l

∂θ

)
dS (2.58)

Y m
l の cos項と sin項についてそれぞれ，

T cos
lm =

1

4πl(l + 1)

∫
S

(
uθ
sin θ

∂Y cos
lm

∂ϕ
− uϕ

∂Y cos
lm

∂θ

)
dS (2.59a)

T sin
lm =

1

4πl(l + 1)

∫
S

(
uθ
sin θ

∂Y sin
lm

∂ϕ
− uϕ

∂Y sin
lm

∂θ

)
dS (2.59b)

2.2.3 まとめ

まとめるとポロイダル係数の cos項と sin項とトロイダル係数の cos項と sin項は，

Scos
lm =

1

4πl(l + 1)

∫
S

(
uθ
∂Y cos

lm

∂θ
+

uϕ
sin θ

∂Y cos
lm

∂ϕ

)
dS (2.60a)

Ssin
lm =

1

4πl(l + 1)

∫
S

(
uθ
∂Y sin

lm

∂θ
+

uϕ
sin θ

∂Y sin
lm

∂ϕ

)
dS (2.60b)

T cos
lm =

1

4πl(l + 1)

∫
S

(
uθ
sin θ

∂Y cos
lm

∂ϕ
− uϕ

∂Y cos
lm

∂θ

)
dS (2.60c)

T sin
lm =

1

4πl(l + 1)

∫
S

(
uθ
sin θ

∂Y sin
lm

∂ϕ
− uϕ

∂Y sin
lm

∂θ

)
dS (2.60d)

16



各次数ごとのポロイダル場，トロイダル場のパワースペクトルは以下のように定義できる [3]．

σ2
S(l) =

l∑
m=0

(
Scos
lm

2 + Ssin
lm

2
)

(2.61a)

σ2
T (l) =

l∑
m=0

(
T cos
lm

2 + T sin
lm

2
)

(2.61b)

2.3 マントル対流のポロイダル場・トロイダル場

粘性率が空間的に一様な場合のマントル対流の定常速度場を記述する式は，

運動方程式

−∇p+ η∇2v + δρger = 0 (2.62)

連続の式

∇ · v = 0 (2.63)

ここで，pは動的圧力，η は粘性率，v は速度，δρは密度異常，g は重力加速度，er は r方向の単

位ベクトルである．

連続の式（ソレノイド条件）を満たすとき，トロイダル場 T とポロイダル場 S に分解すること

が出来る [2]．

v = T + S

= ∇× Ter +∇×∇× Ser (2.64)

運動方程式に回転を施すと，

0 = −∇×∇p+∇× η∇2v +∇× δρger

= ∇× η {∇ (∇ · v)−∇× (∇× v)}+∇× δρger

= ∇× η {−∇× (∇× v)}+∇× δρger (2.65)

となる*2．

トロイダル場 T とポロイダル場 S を使って，

0 = ∇× [−η∇× [∇× (∇× Tr)]− η∇× [∇× {∇× (∇× Sr)}]] +∇× δρger

= ∇×
{
η∇×

(
∇2Ter

)
− η∇×∇×

(
∇2Ser

)
+ δρger

}
= ∇×

{
η∇×

(
∇2Ter

)
− η∇2∇2Ser + δρger

}
= ∇×

{
η∇×

(
∇2Ter

)
− η∇4Ser + δρger

}
(2.68)

*2 一般に，
∇×∇ϕ = 0 (2.66)

∇2A = ∇ (∇ ·A)−∇× (∇×A) (2.67)

であることを使った．
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ここで，η∇ ×∇2Tr と δρger は直交の関係，−η∇4Sr と δρger は平行の関係にあることが

分かる．つまり，

∇2T = 0 (2.69)

∇4S =
δρg

η
(2.70)

従って，粘性率が空間的に一様な場合のマントル対流の速度場では厳密にポロイダル場のみで

ある．

3 球面調和関数の可視化

図 1にMathematica を使って可視化した球面調和関数のパターンを紹介する．m = 0の場合，

経度方向にのみ l 本の節がある．m ̸= 0の場合，経度方向にm本の節，緯度方向に l −m本の節

がある．いずれの場合も，全球面は l本の節で区分されることが分かる．

付録 AにMathematica のプログラムに載せる.

付録 A Mathematicaのプログラム

(* Spherical Harmonic Plots by Masaki Yoshida, 2006/02/24 *)

ll := 7

mm := 4

setPlotPoints3Dsph := 64;

setPlotPoints3Dbox := 64;

setPlotPoints2Dbox := 64;

setViewPoint3Dsph := {0.0, -2.0, 1.5}; (* Default : ViewPoint -> {1.300, \

-2.400, 2.000}, *)

setViewPoint3Dbox := {1.300, -2.400, 2.000};

x[theta_, phi_] := Cos[phi] Sin[theta];

y[theta_, phi_] := Sin[phi] Sin[theta];

z[theta_, phi_] := Cos[theta];

xx[r_, theta_, phi_] := r Cos[phi] Sin[theta];

yy[r_, theta_, phi_] := r Sin[phi] Sin[theta];

zz[r_, theta_, phi_] := r Cos[theta];

epsilon[m_] := If[m == 0, 2, 1];
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factorYlm[l_, m_] := Sqrt[(2(2l + 1)(l - m)!)/(epsilon[m] (l + m)!)];

normYlm[l_, m_, theta_, phi_] := factorYlm[l, m] LegendreP[l, m, Cos[

theta]] Cos[m phi] ;

maxYlm[l_, m_] := First[NMaximize[normYlm[l, m, theta, phi], {theta, phi}]];

minYlm[l_, m_] := First[NMinimize[normYlm[l, m, theta, phi], {theta, phi}]];

absmaxYlm[l_, m_] := Max[Abs[minYlm[l, m]], Abs[maxYlm[l, m]]];

(*maxnormYlm[l_, m_, theta_, phi_] := normYlm[l, m,

theta, phi]/maxYlm[l, m]; (* set 0 to 1 for GrayLevel or Hue *)*)

(*maxnormYlmRev[l_, m_, theta_, phi_] := If[maxnormYlm[l, m, theta, phi] < 0, \

0, maxnormYlm[l, m, theta, phi]];*)

(*

(* check *)

For[ll = 0, ll ? 4, ll++,

For[mm = 0, mm ? ll, mm++,

Array{{Print[ll, " ", mm,

" ", minYlm[ll, mm], " ", maxYlm[ll, mm], " ", absmaxYlm[ll, mm]] }}

]

];

(* normYlm[ll, mm, 0.5, 0.5] *)

*)

(* Color GrayLevel = > 0 : Black, 1 : white *)

(* Note : "ColorFunction" can be used in Plot3D, ListPlot3D,

DensityPlot, CountourPlot, and Raster *)

color_stripes[f_] := If[f < 0.5, Hue[0.2], Hue[0.8]]; (* negative :

black(0), positive : white(1) *)

(* Contours on sphere surface by "ParametricPlot3D" *)

plotLegendreP[l_, m_] := Block[{saidai}, saidai = absmaxYlm[l, m];

ParametricPlot3D[

{

x[theta, phi], y[theta, phi], z[theta, phi],

{EdgeForm[GrayLevel[0.0], Thickness[0.0001]],

Hue

[

((1.0 - normYlm[l, m, theta, phi]/saidai)*0.4)
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(* maxnormYlm[l, m, theta, phi] *)

(* maxnormYlmRev[l, m, theta, phi] *)

]

}

},

{phi, 0, 2Pi}, {theta, 0, Pi},

Lighting -> False,

Boxed -> False,

Axes -> None,

PlotPoints -> setPlotPoints3Dsph,

ViewPoint -> setViewPoint3Dsph,

DisplayFunction -> Identity,

(* PlotLabel -> SequenceForm["l=", l, ", m=", m] *)

PlotLabel -> StyleForm[SequenceForm["l = ", l, ", m = ", m],

FontSize -> 20, FontFamily -> "Times"]

]];

(* 3 - D "bumpy" sphere by "ParametricPlot3D" *)

lengLegendreP[l_, m_] := Block[{saidai}, saidai = absmaxYlm[l, m];

ParametricPlot3D[

{

xx[(normYlm[l, m, theta, phi] + saidai^2), theta,

phi], (* "+ saidai^2" is arbitrary, but best *)

yy[(normYlm[l, m, theta, phi] + saidai^2), theta, phi],

zz[(normYlm[l, m, theta, phi] + saidai^2), theta, phi]

},

{phi, 0, 2Pi}, {theta, 0, Pi},

FaceGrids -> None,

Lighting -> True, (* when "False",

GlayLevel color

is automatically selected, i.e. black at large values*)

PlotPoints -> setPlotPoints3Dsph,

(*Mesh -> True, can not be used*)

Boxed -> False,

Axes -> None,

(*

LightSources ->
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{

{{0, 0, 1}, RGBColor[0, 1, 0]},

{{1, 0, 0.4}, RGBColor[1, 0, 0]},

{{0, 1, 0.4}, RGBColor[0, 0, 1]}

},

*)

ViewPoint -> setViewPoint3Dsph,

DisplayFunction -> Identity,

PlotLabel ->

StyleForm[SequenceForm["l = ", l, ", m = ", m], FontSize -> 20,

FontFamily -> "Times"]

]];

(* 2 - D plain by "DensityPlot" *)

plotplain[l_, m_] := Block[{saidai}, saidai = absmaxYlm[l, m];

DensityPlot[

(*normYlm[l, m, theta, phi] ,*)

((1.0 - normYlm[l, m, theta, phi]/saidai)*0.4),

{phi, 0, 2Pi}, {theta, 0, Pi},

PlotPoints -> setPlotPoints2Dbox,

(*ColorFunction -> Hue,*)

Mesh -> False,

AspectRatio -> 0.5,

DisplayFunction -> Identity,

PlotLabel -> StyleForm[SequenceForm["l = ",

l, ", m = ", m], FontSize -> 20, FontFamily -> "Times"]

]

];

(* 3 - D box by "Plot3D" *)

plotthreed[l_, m_] := Plot3D[normYlm[l, m, theta, phi] ,

{phi, 0, 2Pi}, {theta, 0, Pi},

Lighting -> True, (* False = > gray, True = > Color *)

PlotPoints -> setPlotPoints3Dbox,

Mesh -> True, (*this is no ploblem*)

AspectRatio -> 1.0,

ViewPoint -> setViewPoint3Dbox,
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PlotLabel -> StyleForm[SequenceForm["l = ", l, ", m = ", m], FontSize ->

20, FontFamily -> "Times"]

];

(* output *)

(* << RealTime3D‘ *)

lmax := 4;

setImageSize := {800, 250};

(*

For[ll = 0, ll ? lmax, ll++,

For[mm = 0, mm ? ll, mm++,

Show[GraphicsArray[{

plotLegendreP[ll, mm],

lengLegendreP[ll, mm],

plotplain[ll, mm]}

],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize]

]

];

Show[GraphicsArray[{

plotLegendreP[7, 0],

lengLegendreP[7, 0],

plotplain[7, 0]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];

Show[GraphicsArray[{

plotLegendreP[7, 4],

lengLegendreP[7, 4],

plotplain[7, 4]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];
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Show[GraphicsArray[{

plotLegendreP[7, 7],

lengLegendreP[7, 7],

plotplain[7, 7]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];

*)

Show[GraphicsArray[{

plotLegendreP[7, 0],

lengLegendreP[7, 0]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];

Show[GraphicsArray[{

plotLegendreP[7, 4],

lengLegendreP[7, 4]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];

Show[GraphicsArray[{

plotLegendreP[7, 7],

lengLegendreP[7, 7]}],

DisplayFunction -> $DisplayFunction,

ImageSize -> setImageSize];
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図 1 (l,m) = (7, 0), (7, 4), (7, 7)での完全正規化された球面調和関数 Ylm のパターンを（左）

球面上と（右）凹凸で示した．文書のサイズ削減のため図の解像度（300 dpi）を落としている．

高解像度の図またはMathematica のプログラムが必要な場合は筆者に連絡のこと．
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