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Abstract

The establishment of the theory of plate tectonics at the end of the
1960s provoked quantitative discussions regarding the forces acting
on lithospheric plates. Subsequent studies during the early- to mid-
1970s considered plate motions as rigid rotations on a spherical sur-
face. A theoretical analysis based only on tectonic information from
the Earth’s surface revealed that a candidate for the primal driving
force of plate motion was “slab pull”, which may be balanced almost
completely by “slab resistance”. However, because plate interiors of
the real Earth have finite effective viscosity and are part of the cold
thermal boundary layers involved in mantle convection, they should
move with an element of internal deformation rather than perfectly
rigid motion. A recent numerical simulation of 3-D spherical mantle
convection revealed that the breakup of Pangea, subsequent conti-
nental drift, and the present-day continental distribution, could be
acheived by planetary-scale mantle flow. Large-scale lateral mantle
flow is inferred to have originated from a high-temperature anomaly
region beneath Pangea due to a supercontinental thermal insulation
effect, rather than by mantle upwelling flow from a “superplume”,
and subduction of cold boundary layers is inferred to have spontane-
ously developed in the North Tethys Ocean during the early stages of
the breakup of Pangea. The present results, combined with other nu-
merical simulation results and seismological evidence from a recent
sub-seafloor structure survey, indicate that the “(continental) mantle
drag force”, enhanced by mantle flow beneath the continental/ocean-
ic plates, could be the primal driving force of plate motion and conti-
nental drift. This possibility raises new questions about whether the
slab-pull force or mantle-drag force is the primal driving force for
plate motion and continental drift.

Keywords: plate motion, continental drift, mantle convection, driving
force, resistance force, numerical simulation
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Fig. 1. (a) [lustration of the relationship between plate motion velocity and asthenospheric flow velocity. (b) Various forces
acting on continental and oceanic plates (Uyeda, 1989). (c¢) The relative magnitude of each force estimated by torque bal-
ance (data from Forsyth and Uyeda, 1975). The slab pull force is nearly balanced by the slab resistance force.
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Fig. 2. Relationships among the slab pull force (Fsp), the “effective ridge push force” (Fgp'), and the collision force (Fg),
based on Seno (2001). (a—b) Cases in which Fp is positive and large; (c—d) cases in which Fip is negative and large; (e—f)
cases in which Fyp is small. The lengths of arrows are relative to the magnitude of each force. If the magnitudes of the forc-
es denoted by solid lines are known, then the magnitudes of unknown forces, denoted by dotted lines, can be estimated.
Thick white arrows in (a) and (b) indicate the eastward component of the slab pull force toward the continental plate (i.e.,

South American plate).
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AN TV Z EE2EKT 5. U —7 )L DE
Wi=F72E, BizULTTL— N E2EENT 213 EDOKE /AN
INEEDIEETHEEND DN E D NENDEERNED D, T
NTHERGEE DR GHOFHINEHhE 2 &, TL— MES)
WD RERT ) AT 27 OFNMNBHo/zENnIEZE
W<ETIT 200105, 5%, IEIERBEOWIERTT
[ CELS B s i, 7L— NE#D > ML O
WCEOTHHEINTND ENWIEZEIDHEELHDITT S
TdHhAD. Hikd Ghosh and Holt(2012) D= > LAt
OEWHEES S Il —arhboaoniziEz 1o &
W icHEsEMT TIE, ML T > MLOFEIUL T L — NES)
WAL CTHEEE 2 72 L TnwB XK H1I2H H 2 % (Ghosh and
Holt, 2012 @ Fig. 1B & 4D).

AR CHN LS EIERIMES I 2L —2a TR ER
FHCHRRST L 7= IR B A BIASE R 2G5 &, INET
Wik E INTELZRTTEIDRDHITMAT, <> MUK
IZPES Y > VAT S 7L — NEBOFEN ) (it S) & LT
FEL TSR 5.

BAEONRORES : EBMINREIBNSTH

AT TR CEMET L — N OEE ORI A,
REBEOFEICEL T3S SIBMOEENNE L/
5. TOMHIZEAWIITZNTNO T L — N DRI DEWN
L, FUTE B~ 2 MVNERO O PR D E W Hsk S
5.

KEETL— N EWHET L — N OFFIILI T OSTRE R
2%, —DI, KETL—NIT7 RA7 7 HEDT 200
~350km DE I 2D Z & Th 5 (Hl 21F, Gung et al.,
2003). ZHUTLD, K¥ETL—RMIBERICE>TET R/
A7 27 &0 BEMROE N EEY > MLVETESAATY
5, ZZTC, LML ERTREIAT T EHES
410 km OHIFEPHIARERHZ FHET5< > MBBE L
ORI EN-BZIETAH, T O FHREM R 10* Pa s
T, WETL—FEFOTYE ) AT 7 ORMER (10"~
10 Pa s) K0 &b =HkEW. KT L — bk OEH)
HEPENRMEETL—b, DED, K¥E T3, F
ANDET L — N OEFHEE LD HEEIT/NI VWD, Kb
7L — b DEO—EHNEW BT > MNZZREE L TnS T
HTHAD.

£z, BIDOOEMELT, KETL—ML, ESP
EEBEOARE—ICXBNEN (Fig. 1b @ Fop), HEHHEIZE
Z4E, EhCE > TRtz iz L LS &35 b ENn
TWa., LML, TOMIRA T TEI55R0 TR T—HiLL
T/NEWOT (R, 200D, EEERT DB 20
WEEALUTRN, Ldio T, KETL—RMNThnd icD
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WTH, INETiHEam L TERWETL— N ERRICT L —
MERNERETFY > MVRATHTNERENET TH S
(Fig. 1b).

Z I TCARIETIE, KEBBIOFEBNICDONWTE AW,
ZHZDOWTE, BAREENHI DB E, HRHLUIZK
EEBHIEDZHEHM IO DI T TCEAZHBRNWSES
.
T, BREEZHHIEDEHNL TOANZZXLOH
RS ZDDHEZ TIN5 (KK, 1997). —DDAHZX L
1%, Y2 MLHRO EFFE (B DN, Y2 ML=
£ T, BRENIRIHIREHDEHNTHHTZENDEZ
THbd. ZOANZZALIREFIFHEMEINS (> ML
TIN—LDOEEMNS BEBY E NI ER). O —DDAN
ZAAE, BARREEFEDHER EOET L — RAIL SNAL
BNWT HHAEEENICL > TEENS 7L — NERT (iTHD 23
JHIKN &7 5T, BAREPERICHIRISHDME N T ORI Z S
EVWIEZSTHD. BHAMIL, BREOR CHlETL —
NS AEIFICIEAA AL TV DS, ZOHEET L — RS
Fem 5B (RSB T5 &, TOBRLZEDZ2HD 5 X
DT HEREDHHEMNE VA EN D ) (Fig. 1b @ Fgy) 7M@)
LZENBEALNS. ZOHE, BAEOTIZ, #TLHT
2NV — ADEIET 2837 <, RICFEETHELT
b, Y2 MV — LT AR RE I RANTEIR L T 2%
HEREZTDEAS., ZOANZ A LNIZEFGREEIN
5.

DT DDANZALE, 2RIV — LD LR
RETN 3D >, BB RBESIZLANE Z 5 DN (B2
DENTH B0, BREENERICIE, 7D TREEREAEZEL
T d D567 (A—F ¥ — =) DFEL, ZDHksy
WEHHFTEWEERH B (2721, BIEERH KR AR
DOIFEICLD, <o TWAESHH D I EITHEET D).
EELDANZALITBNTS, HAMEOHZT, T OHE
SNOTWHESTHENOELEMITEZ 2 2 ENH50 Lk
W, BIEEIT L CWAIRY 7UHDTL—K - U7 K - N
L —TOKRMEHNZNT, BT UBEATITIN > TVWDEDITTIX
IENDT—HEITIZE AT,

INTT DHEUCEE LTI, M SFIEEILA 5K 2 (84
RIS 1 EERNIZNTTER Y M ARy T Ib— L0 Wik
WCERL, BEMICAEDBE-ZEEDONTNLHDT
(Storey, 1995), BEBINSGHNEERANZX LI ST
MBENIRN. K7 68 5000 FTERTICHRL 7B RO T ¢
Z7 BHBIEOKTEE NICHh o 2 KR~ > BV ER#D
HOFAE > 72 & HHEFHGEIS H 2 5 L (Bl 21T,
Li et al., 2008). 7272, @9 U HEEEBIN RN EE 2 A S
ZALTH S EWETE DPERNIZHE A - HIERY B
AR E 70 <, EHREOHEROBRENHTIEI DO A=
ALDMEEHITI I > 72 &, BURTIEZA TR b Lz
W,

KERBDRES : SETIN
RICHHRU T REZBB S B DIEE T DONTEAL N
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A FVADHEFETH ST —P— - F—LRF, 77
Lw R« 0o —EE U 7= KR Bhan (Wegener, 1912,
1915) Z#HHT 5729012, 1928 WD T~ > MILIHH
ZHeMs U7z (Holmes, 1931, 1944). 2O~ > BVRRZ,
HEY 2 MLt S B2 EE K HE N THWRh-o
o REBIZFRESNLRN> L, BERT
1960 FHIBHIC/R D, 7 AU NOHERYHEE TH-o/zn
IN=b 22DV« T =Y EWEEETH O N — -
NEZ R - AR OMEEILRF M RE SN D &, KRER
B X 15 K D 12785 7= (Dietz, 1961; Hess, 1962).
K12, Hess(1962) 13, [~ MIVAHANEREIZET 5 &,
R 7= BN LA L, e & U WIS TRk U
oo =, RIURIBUAH UGS, HOIEE b IG5
WEANFLHEINTW L, RO PR T < T Az
HEES, <> NUVBICHUBIZT DIAEND. £ I0%E
BCTHD]EEAT

1980 F 0 5 1990 FRATHITES Lz o—N)L
Wi N EST 5T 4 —I2 KD~ ML DR B R
Mo, HEEROWREOSME, i< > MLzl o L5
WE—H LW EAVREI N B ZIE, Dziewonski and
Woodhouse, 1987; Fukao, 1992). ZFUINRIZLB~ >
NIVRIRDA A—D LRIz 205, HOZEATEE/RI LT
L—h727 20 ZHGHOMSLE D b —25EIT, KEBEIO
JRB I3 < > VO KBRS EMER Ch o= 2 L Z2RB L
ZEEAD.

< > MVHRASKERS BN & > TRERFEEH Het ) O
REZERZL TWDENDIEZID L EH T O\ HIE
WRET T T4 —DBGLRINS H o/, MR - HiBkY)
R K O <MEEET IV EANWT, Thaekbm<E
RUZDWE, T4 T — -« 7IVNLYHMEEL /- “continental
undertow model” T& 5 9 (Alvarez, 1982, 1990, 2001).
WOETIVTIE, T~ MO > MLk k T
B 4 D3 EOREBRIVITHMrn, JEWT2 b X
T LT ERFORMET L — N OBENIZDE FO > LD
T Lo TEEh SN T S (Alvarez, 1982) (Fig. 3).
DE D Taf B~ > BIVOKERH N KB RAUL, €0
LTV — S EREBEICEREIL, R, A—ZX TV -
BAERE (AAD A EEERIOFRN & > REEIO< > BL
DRNBIZ DN DA TR E TS Z & (Alvarez, 1990),
KLEMN S D) THHIHRT 5~ > MLORNICE ST, HY
TN TERE NS S PRARAHEOR M EHHTES
Z & (Alvarez, 2001 72 EZ/RLU 7. Alvarez(Q010) 132 5
12, Torsvik et al.(2008) @~ 0—/\)L 7L — NEEET)L
MHE5NS 8000 J7 4ERTLARE DFEI R KRERB B DRI H
DWTC, TIVTA, 70X, eI VYOEILRERKL 72
XEY, 7IEY, A1 X ROERET L — D152 T T
L — hAOWEZEAKFED T ORI > ML DRI L >
THHATES &L, Y2 MUERAD R T TINEREEN S
YEEL 2 D RBERI L OMZE, BIUZOROILLE, 2T
TEI0RD A TIIFHATE W E L=

ANRD K DIT, KREEBBIOIFREINICE L TR THREIE N
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LibAENBEBIIERIT, T — MRS TH S, HA
ML — MR DIS 5O T —4 BIZERIZE LW, 20
KOBEeNEHROFT, WEE Q001 1, HER ETHRS
AR B KR T, PERICT A T L — R OhBA S
EFED, NGO T— 5 MHIRNE < FFET SRR AREICE
HUT, MX7L— DS Z 3R L7z (Fig. 2a,
2b). EBKKEETIE, 7> FRAILMROETIE, HEHRO
EWENERINDD, 72T AROFEMORES T 72
EETI, HEEEARIOWEIE ST IS L, S
PEIZ AN o TIEME S 11TV B A B % (Heidbach et al.,
2008). FKKBEIZIZF AN T L — N OILHRAHIZEL ST,
10°N m™ OF—F—%HDA T T5I5E0 ORI E kL
5 MENAN T W S (EEF, 2001) (Fig. 2b O FHEE D RHI).
TORER, ZONEHVED LI ITKED NIZHEEDT >
FMVRADEHNTNS 2 EAMEMN, <> MLREEERR
Mz FiE S E2IZ EDOHEEN &L TEINTWD Z &7k 5.

TU— FMEFORIE : EFIVENLSDOZNETOME

1990 R FTHIC/IeD &, a2 E 12— —DMhHE & BdlEstT
BN O EITHEY, <> BV ORI ORI & % %
L7~ > MVAHROBES 2 2 L—2 3 e iR L, H
R T — NEBNU- K EED) & I T & 2 Bk E A
SN M IR0 RS Nz (B 21, Bercovici et al., 2000;
Tackley, 2000a DL E 1—). <> ML ORMEROIE LKL

bt 2015—12

Fig. 3. Sketch illustrating mantle
convection patterns based on the
“continental undertow model”
(Alvarez et al., 1982). The arrows
in the lowermost part of the upper
mantle show the mantle flow un-
der the asthenosphere, which is
mechanically coupled with the
mantle flow in the lower mantle.
The arrows in the uppermost part
of the upper mantle show the re-
turn flow in the asthenosphere.
“y” means that the mantle flow in
the uppermost part of the lower
mantle drives the thick continen-
tal plates (reporoduced with per-
mission from John Wiley and
Sons).

HEEETDHE, ¥ MUARRO LR ENMGR TH 2
TEOITHERNE <720, HAICHEROY Y X7 = 712l
FBINTED. BRSNS GMEIMEREFZOFOT >
NV & DRMERE 3 M S 4 LA EERELLBLETH
% (B 213, Yoshida and Kageyama, 2006). XiZ, FEED
HWEkD 7L — MEBICPIREEF 2K T 0iTiE,
L— BN, DR EREOHZE BE S B TRk R 2
ED, BEINZ WA (FL—MPEBIGES TE 5L
ST DHMENDD. TL—hEEIE52001L 40
D—IIMERNIITERICER I N TR, BEETU >
JETO ECEENBRIEIEZRETINNREBINTED
(B 21X, Trompert and Hansen, 1989; Tackley, 2000b),
AL, BODHDER OIS N URZERH, DEDED ik
BEREE ITAHY) 23— ORIE RIS 1ITET B &, £ DIk
NOMEEBAIZNEDITL TEDEHHORMERZE TIPS LD
ITHUTEW LR, f@iFICRERL A 00— LIRS, Tack-
ley (2000b) ® =_KITHBET IV DX > bIVHR Dl >
Salb—aritid e, EEOHEOTL—FDXSIT,
R PMVOES EDHREVWKERT =)V EFFDE DK
FERk X N2 BEERIE T DAL 100 MPa FEHE TIEH 1TV EiiBH
RSN, ZNEDENT > E/NInE B2, 10 MPa
L), HIADMRITENDNZ EL, WENETFLTE
T, BOWH DOKFEZTr—)NIY > MIVDIEZ LD H/hE<
o TLES. UL, =K@ ET )V THRUTHS
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& 97T (van Heck and Tackley, 2008; Yoshida, 2008; Foley
and Becker, 2009), BEDOE A, ZNLAEORERIZH L
WHIRIZZRWE S ITEZ 5.

KEBBIORIREZDEH S :
EFIAENLSDINETOMR

X2 MVHREOBEY I 1L —3 3 > CREBE 2 LT
DIEEIE TR L2 7 L — MEBIOEB T 7L O &
BILICIRDHENTE . =R T IV ERWTK
MER 2B L 29O TORFEIS, Phillips and Bunge
(2005, 2007) Th 5. #H51E, “BWREE" ZHEL LR LR
WHARRD %" (ZOHIINHTHENZER THROES
FF0. [ OEOHAB RO Z &) O F o
5, BATy TR NIV NS > A ZHRL, HEOER
M &HEZRD, KEEZBHFIIELENDIal—ar
FEREFRE LU

Phillips and Bunge (2005) 13, Z4EAT T EANZAD A1 A
WD R, Eiz, HEEN—EOHEE, FHYMLE
EER~ > BV & OREIER A 30 DA (FEE~ > ML o
TN E W) OEBED T T, BAEOBEIOKT LT
> MR OREME ORI LB L. 2O/, T
i~ > ML E R > BV E ORI 30 f5DOETIVT
1%, ~ > NIVSHA DRSS BRI AR B Ok B 1 Al
W9 % i (PUT, degree-1 fiil IR 12720, EBRREZ
#9110 (AR THIER O PR 21T > 72 D 3R72 0 3 2 IR
BB ET DI ENGNoT. FEY > ML Ok R Z 5 <
T5HI L, Y MUARROIEFE S OIREE RS LA U —5
LT B EEFUBRDT, Mif/NY— 3k 0 Bl ERM
W22 2 e &, BREDCE T > MVOBERERRIC X
D @RI 72 2205 GLUERRI R, &2 WIFERDR) (Ander-
son, 1982; Ak, 199712k > THEiRIC/ 5 T & Dilif DE
KZ2SH % > T degree-1 #itilci2 5. ZOE&E, BAEOK
FOHMENS> EHRELRD, HERD S ORI fE R
WZHED > TREIT 2 LN ETEHEVIRT LD THD. —
7, BURNEINELD B THiIERED—E S W S sk~ > ML
ERBMNTHNZRET T, ¥ 2 MVHAOIR RS AL
12 KELF QR EREEN SR L, 2o & SRR 30
EELRLTHIFEAEBH LN, T, BRETOY
> MVIZBTDIRND NV OBFIMNZEET O/ 5720 T
»H5%.

ft\ T, Phillips and Bunge 200713, [ UEHHEFEE
HNWT, ZDORERBRKEND DELE ERDD/NS EKREED
HHLE, IS5, AT NSDMBANNWES EH D51
ST alb—rarEfio7(Fig. 4. ENETNDOKEE
DOET, HHWVL, FEETHIANEE> Y132 Y
R DRI NZE LTS, ZDDRIIKMEND
LETIVCE, a705 DOMEEEE L IRWHEIIIRED
BESHER GERREY 1 27))) ORISR TH D03, £
BROMERO LS Icayhe omEeER L 2EEIE 3
7 R MNUERNSFAET D BRI — LK 0B REEY
A 7 )V OERIEMSARANCIE D Z &Mooz £,
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I WKFENE K TFET DI R BRFENTE 55
A I 2T BN ENND T ENVino iz, EEROMER~Y >
RV TCIEM3 2 BURE DK 10~35% © OEEN NS <
> PIVTRALTWS (Lay, 2008). #5032l —i 3
CHRERMRT LD, FEEOMERTIEZ > TE /@AY
27 )L DEFEE TS P U TR TR D> 720 d L7
W,

Phillips and Bunge (2005, 2007) ®E€7)LTid, ¥ >k
IVORMERDIRBERGFHEIIZEE I N TN LIER L
W, ZO), ZEOBEREAEII L — OIS ICEL
o TWIR. Lo T, M5 OfERIE, @itk 5 7
MEEDO T — N 2B05RZ N < THY > MNLOEGHR
FEENE T DVKREZ KB S BB DI+ iz > Tnws 2 &
ZRBEL TS, ZHUIETIRD Ghosh and Holt(2012) @
FEREFAFIITH S L DB A S.

ZDOEDIT, RENEROBBE L LT WERMAEY > MR
DIRERENTE LT REEMEDHETHD, ZORK
ERENEZEND EoNT ERDDIEIHMN H7 < BAREDEL
TERNENC L D HRREE N O EiR AR AR O TH 5.

KEBBIORIF L ZTOERENT -
ETIHAELSDRERFOHE

RTEEDOETIVTIE, KEESRIRASERED “E DL S
EFIULEINTER. REEIIY > MRS AT L EE %
FNCIFIFMANL L TH DD T, BE—iELIiZINTE
WAY,  OKREMETASE, HiERsh&2E U T > MV Dl
MBI K D BRI N, EIICE, WEILENIZIEY
ODRKROESHEKTHS. L, BERNBBREEZ
DFE EFIFEMFITTE THERIL U TR < SRR EE LT
AEZ D, KRZEED TN &, FOANTRRIEEIHRIC X
DIRBINDREENVRGEINRLBHMENRHBH. 2
T, BERRITESIETIN S FETKREE KEDR T OEAIR
ELUTHRY, ZORTOBEZRERM ZET, ARO
B 2R DORENER LN SBEITES =K~ > MLt
WET IV 2010 Fitgh 5 FEER I N7z Rolf et al., 2012;
Yoshida, 2010). ZH5DOEFILTIE, <> ML OKER
DEREKRFEEBRIRL A 02— G B EIh, BEOH
ERDREEIC R DIEF WY, RR, KEEIIER ITHEEIIR
LT\, EBEOMERIC BT 5 KEEBEIOFE /112D
Wi CERM o k.

FERREIN > 7 713K 2 EAERTIC 2% Billa L 7278 (Storey,
1995; Seton et al., 2012), /N7 TR, HIEOMER
DISKEEDTERL E 15 B THERA N> FO—DIF, /N>
TT DM ERRL TW=d2 RUFKEO—THo /-
A > R#fiRRENT—F AMgaEE T L L, #4000 7 4Fqi
ETICA—I 27 7L — Mtz l, BfEbapit LakilT
TWHZETHD. ZOHEIE>THDTUIT—F XD
WETHH>ZBANEEL, Ex 5T - FRv MBI
SN, FEDOMBIEEPHRAT 25 S I LTS, —F
T, 12 REKREOHEHRIZE>TELCZEYTY - FXRY K
IOBRL, 7V7 B A= REDRNLICET G L, it
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Fig. 4. Results of numerical simulations of mantle convection in a 3-D spherical shell considering “rigid” continents (Phil-
lips and Bunge, 2007). (a) Number of aggregated continents with elapsed time. The gray rectangles show the ages at which
each continent gathers to form a “supercontinent”. Here, it is assumed that the supercontinent is formed in the models when
the number of aggregated continents is three (in the case of three large continents) or greater than four (in the in the case of
six small continents). The models shown comprise (i) three continents and no heat flow from the core; (ii) three continents
and a basal heat flow ratio of 30%; (iii) six continents and no heat flow from the core; (iv) six continents and a basal heat
flow ratio of 30%. (b) The behavior of continental drift for model (i) (reporoduced with permission from The Geological
Society of America).

ZRLBEOHIRFEDOER(LZ D5 L TS BAIE, & % Z THiT, Yoshida and Hamano (2015) 134 575 b

Bg, 2013). —JF, A > REERENL—F 7 T — M
UKL, Y2 MUCHEARAAT W T L — MHIRL,
BIEDY O MVERZE T L TCWAEEZ NS, DR
<X > MU P MEY Z 71— (Fukao and Obayashi, 2013)
THLEIN/~ > ML OHBEGEE RE#EIC LS E, T
DA T TNHHT 2 & b 5 Mgk mf B fEss, 1
CRHEREOTDOT > FVEES, Aia< EHESK 1500
km £ THET D ZEMNHRSIN TS, ZOXDIHIED
HWERDIEENZ L RISHEEHEA TS > RLKPEDIL L
1, BURMIEREIAIC BV TERNBBELETH DA, ZORRA
FARZRIHI N TWRN S 72,

WKM7 —% (Seton et al., 2012) iIc&k > THEILEI N 2
RO RN 7T DIRT—F &, FEBEOY > LD
Mtk INS A—% — BB LR EERN O > ML
ORBBRIES I 2L —3a>z2EEL, 2 EEFMNSBIE
ETOREBBIOMNTEHN. 2 EEMTBI2< > MY
KHROEELOUSML, NoFTEFO B~ > Ui
3, AR O KD BERIREHE L, WIETO<> M
K0 BIREN 200°C mW [ BARN A EE (Thermal blanket
effect region)] (BAF, TBE fElEh) &, THi~ > ML2akic
1%, &2 MVSHENEY T 7 0 —FEF )L (Ritsema et al.,
2011) A S H#fEE U 7= R GG 2 AAATZ. LIeii> T,
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(b) gz
-1antle.downwellmgs Pra

~_Mantle upwellings
- &i % ;

175Ma <~ 100 Ma

Fig. 5. Time sequences of thermal structures in the mantle obtained from a numerical simulation of mantle convection with
the supercontinent Pangea (Yoshida and Hamano, 2015). The panels show the conditions at (a) 175, (b) 100, (c¢) 50, and (d)
0 Ma (the present day). The dark gray (light gray) isosurfaces show the regions with temperatures of 100°C less (greater)
than the averaged mantle temperature at each depth. Positions of the continents are represented by gray regions at the sur-
face.

Indian subcontinent ) )
at 60 Ma Indian subcontinent

at 40 Ma

Fig. 6. Illustration of the mechanism of high-speed northward drift of the Indian subcontinent. The “TBE” in the left panel
shows a thermal blanket effect region under the supercontinent Pangea (modified after Yoshida, 2015).

T~ > ML, CMB(a7 - 7> MVER) EORBIE
IR R, DEDSBREEEENZENTHS (Z
DD ET IV OFEANZ, Yoshida and Hamano, 2015 %%

DRI, FDIRAAA, B, NN THE T _:&Z%Lh
TBE @0 5 #FE F D~ > B IVARID D /KGO
CMB Lt O KEISE S 2w ﬁﬁ@b®7/%wwkﬂﬁk

oz &).
oM, KEEEY 2 ML EORERL, N7 7E N0
EREOMRE, SEIHDNTA—F -2 I TER
PR 8ES 2 2L —2 3 DR FEMUER KESHEY >
L& ORETERD LAY 10° 2E DA, EEEOHBRORE
A4 —)L T, ﬁ@ﬁ@#k%f/bﬁkﬁwmﬁt@&
=57 KEANDEZZIRE, NPT T 53585 OHEREE D
RANXY MPFEBE SN, RGNS 2 BHERIC, BED
HERIGE W KRB SR S N /2 (Fig. 5). —74, Rt
M1 FREL D KEVEATIE, EEOHERDIERE X 7 —
JVTKEBENIIZ Siamorz. ZHUS, KRR E N
ZE, KRENOKEEE OSREAESY DITRE, KEE)
ERLIZK K250 6THS ([fFEn OEBZHO I &).
X7z, INOTTREEOREST), R, NT T O—5
THhoA > REiKED E#HIEO R FHENI NN 7T
BRI S T —F AHHLE O O — 5 27 RFEDRIT H 7
IZHEET HRIREERB O~ > MVEERNOILHAS (X >
I\JLTB%‘Z;’E*E) IMESMITTHDHZENHSNTIRS T2 N
7 53 5% DA KR & EGIRIBXE) X B 2 KRR~ > ML

Lo THRENS (Fig. 6).

H S5 —DEEAKFIT, TBE #EHEIZEERTIC, CMB
FOREREEERRE R OAZBE LTIV T, EE
DHIERDIRFE]Z o — WTﬁf@%%_ﬁmﬁ%M%iﬁﬁé
Nigno722ETh5. LT, INT T OHHOER
RN, < > BIVESRD & Oy 7s B 7))L — ATz
<, WO T7HEFOEREEEBOER TH S ENF A
5.

WoEDIal—a AERERNT, KEOHZEE &K
FRE T O~ > MLOWHNGZEZFEL <@ 2L, Hnckd
A, KRIFENTIKERE B OME X D bREE FOY > LD
MNDHENRENZ EN 12 (Fig. 7). 2O &, 4
75 < & HEBEOHERIT = KRS T 2TFT T = 2 sk 17
%M 2me L7z BTV T, KEEE FOX > MLOFRNNS
BEICKESTOIRE) ) HEE) 1TR>THD, KEBEHO
FEBFEBHNA T T5I00E0 72T Tldie<, ¥ MLV
NHREBREEZ R L TODHREMENSH D 2 & H%T
5. #14000 TERTE CICA—F > 7 REEICHZEL -1 > R
HKEEFGZA > RTL— ML BABR RS 2, B
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Fig. 7. Time sequences of the velocity fields at the surfaces of the continents (black arrows) and at depths of 302 km be-
neath the continents (white arrows). Data were obtained from a numerical simulation by Yoshida and Hamano (2015). The
panels show the conditions at (a) 175, (b) 150, (c) 100, and (d) 50 Ma (as in Fig. 5). The velocity of mantle flow beneath

the continents is generally higher than that of continental drift.

fEbaBIt EEFETTnD 2 &1, <> MUV KBS
DFEEI 2> TNWDIHLTH 5.

Yoshida and Hamano (2015) ®EF)L T, <> MLD
KR ORI 2558 T 2 &£ OB E ORGHER
E<20, EEOHERD T L — NE#O X D IR FE TN
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